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Summary

The successful application of machine learning algorithms depends on choosing the right space
of hypotheses. Finding this space is a challenge that machine learning practitioners must
regularly address. Ideally, one could specify a large hypothesis space and perform a complete
search over it. However for most interesting problems this is intractable. Many algorithms make
simplifying assumptions such as learning rules separately and combining them. Unfortunately,
such approaches are prone to learning suboptimal hypotheses.

An alternative is stochastic search which may not necessarily return optimal hypotheses,
but can provide a way of rapidly locating good ones and is more robust than greedy search
strategies. This thesis concerns the use of evolutionary algorithms to perform stochastic search
for formulae in (a subset of) first order logic. Evolution is viewed as a complex deductive-
inductive process that conjectures new formulae and compares them against one another based
on their logical consequences to determine their suitability as a solution.

Two algorithms were developed that comprised of two competing strategies: global reliabil-
ity and local refinement. The first algorithm learns control strategies for discrete-time dynam-
ical systems. Empirical studies revealed that although simple strategies could be learned, the
evolutionary algorithm conjectured many formulae that are syntactically incorrect or semanti-
cally invalid. As a result, search was unnecessarily inefficient. By restricting consideration to
the problem of classification (or concept learning), an explicit logical setting can be adopted
that defines the valid formulae. The second algorithm, referred to as an ‘evolutionary wrap-
per’, is a hybrid inductive logic programming (ILP) / evolutionary algorithm. It can construct
only classifiers that are consistent with the logical setting. Empirical investigations revealed
that for some problems considerable increases in predictive accuracy can be achieved over ILP

alone.
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Chapter 1

Introduction

1.1 Natural Evolution and Machine Learning

The theory of evolution is the unifying theory of biology. It is governed by one fundamental
principle or law: all life evolves by the differential survival of replicating entities (Dawkins,
1976, page 192). This law is commonly referred to as natural selection. According to Darwin’s
theory of evolution through natural selection (Darwin, 1859), an enormous amount of genetic
variation is produced in every generation, but only a few survivors of the vast number of
offspring will themselves reproduce. Individuals that are best adapted to the environment
have the highest probability of surviving and producing the next generation (Mayr, 1997, page
176).

Nature has been the source of inspiration for many of the paradigms in machine learning,
such as models based on the neuron and immune system. However, in this work we are
concerned only with machine learning through the simulation of natural evolution. The idea
that a learning process could be constructed through the simulation of evolution dates back
to the earliest days in computing e.g. (Turing, 1950). However, it was not until the late 50s
that the first evolutionary learning systems were constructed (Box, 1957; Friedberg, 1958;
Bremmerman, 1958). An excellent history of evolutionary computing may be found in (Fogel,

1998a).



In the forty years since these tentative beginnings a wide range of evolutionary algorithms
have been developed and many real-world problems solved (Goldberg, 1994; GALESTA95, 1995;
Fogel, 1995; Béack et al., 1997). As a result, evolutionary computing has witnessed growing
interest in the machine learning community (Alander, 1995). The success of evolutionary

algorithms is a strong indication that some valuable abstractions have been made.

Although widely studied, evolutionary computing is still devoid of a widely accepted theory.
The types of analysis include schema theory, Markov chains, dimensional analysis, order
statistics and statistical physics among others (Eiben & Rudolph, 1999; Biack, 1996). One
of the main problems stems from the complex relationship between search behavior and the
representation being manipulated. One school of thought has been to abstract away from
representation, e.g. (Radcliffe & Surry, 1994b). However, in this thesis, we adopt the opposite

approach and commit ourselves to one type of representation language.

1.2 Evolution and Logic

According to (Burks, 1975),

Genetic strings are sequences of instructions and behave in the organism like
computer programs. Moreover, genetic strings give rise to new genetic strings
by such operations as splitting, duplicating, pairing, crossing over, inversion, and
mutation. This process is analogous to deduction: just as various conclusions follow
deductively from a set of premises by the rules of inference, so various genetic strings
may be constructed from a given set of strings by those genetic operations. Because
of this analogy, genetic strings can be treated like formulas of a deductive formal

language. [...] Thus natural evolution is a complex deductive-inductive process.

While Burks’ analogy is at best loose (he appears to confuse deduction with induction), we
adopt the view that evolution resembles a complex deductive-inductive process. New genotypes

are conjectured (an inductive process) and are interpreted to form a phenotype by a deductive



procedure (that is almost certainly neither sound nor complete). Thus a gene, much like a
sentence in any formal language, exhibits two levels of interpretation. Sentences, whether
in the language of genes or formal logic, are data that may be manipulated and, they are

instructions that may be interpreted (von Neumann, 1966).

On this pretext, we view evolution as an inductive process. And, by simulation of evolution
to conjecture sentences of first order logic, we aim to build learning algorithms that can address

the problems of classification and control optimisation.

1.3 Setting

This work addresses two problems in machine learning;:

Control optimisation in discrete-time dynamical systems. The environment of an agent
may in some situations be characterised as a discrete-time dynamical system. Such
systems are represented as a number of states and transitions between these states. By
selecting between a number of actions an agent can cause the environment to change
state. Given that each state has a corresponding utility (or payoff), choose from a set of

actions to optimise payoff.

Classification. Given training examples of the form {(x1,v1),---, (Xm,¥Ym)} for some un-
known function y = f(x), where the x; values are vectors of the form (z; 1,z;2,...,Zin),
and y values are drawn from a discrete set of classes {1,...,K}; find a definition of

function f such that the y value for any x; from the same distribution is accurately

predicted (Dietterich, 1997).

These problems have a wide range of application. For instance, the control of complex
processes and knowledge discovery in databases. In control engineering, one is concerned
with the control of complex, interrelated systems such as traffic control systems, chemical
processes, and robotic systems. One approach is to use a closed-loop control system which

uses a measurement of the output and feedback of this signal to compare it with the desired



output (Dorf & Bishop, 1995). A particular type of closed-loop feedback control system is the
discrete-time dynamical system. Knowledge discovery in databases is the non-trivial process
of identifying valid, novel, potentially useful, and ultimately understandable patterns in data
(Fayyad et al., 1996). Two primary tasks in knowledge discovery in databases are prediction

and description; and one of the most common approaches to these is classification.

1.4 Organisation of Thesis

Chapter 2 surveys previous work on evolving logic formulae. Previous work may be split
into two camps. In one approach, the population represents a set of conjectured formulae,
while in the other approach each member of the population is a simpler formula, such as
a propositional rule, and consequently the entire population represents a single hypothesis.
Chapter 3 examines how this choice affects evolutionary search by developing the notion of
search locality for formulae. Informally, one approach uses the evolutionary algorithm to

perform a “local” search whereas the other a more “global” search.

According to Torn and Zilinskas (Torn & Zilinskas, 1989) any optimisation method (such
as a learning algorithm) that operates in a space too large to search exhaustively requires both
a local and a global strategy. This motivates the use of a two-levelled search comprising of a
local strategy and global strategy. In Chapter 4, a two-tiered evolutionary learning algorithm
is presented. A conventional genetic algorithm is used to search for formulae at two levels
simultaneously. One level searches the space of propositional rules, while the other searches
the space of rule sets. The learning system is evaluated on a simple discrete-time dynamical

system—the two player game of noughts and crosses.

In Chapter 5, the question is posed how can one use evolutionary algorithms to learn logic
formulae efficiently. The answer is straightforward: an evolutionary algorithm conjectures
many syntactically invalid and semantically invalid formulae and thus searches a space far
larger than is necessary. While simple to identify, this problem is not so straightforward to

resolve.



In Chapter 6 a classification algorithm is described. The algorithm constructs classifiers
represented in clausal form by performing a two-tiered search. A search at clause level is
conducted by an inductive logic programming algorithm (Progol). This is viewed as a local
search. In addition, an evolutionary algorithm performs a global search. Each individual in
the population is a clausal theory and a crossover operation allows exchange of clauses between
theories. As a result, the evolutionary algorithm directs the computational effort expended
by the ILP search algorithm. Chapter 7 describes empirical investigations of the algorithm on
fabricated and naturally-occurring data. In Chapter 8 findings are summarised and directions

for further investigation are identified.



Chapter 2

Background

My mind seems to have become a kind of machine for grinding general laws out

of a large collection of facts. —CHARLES DARWIN

Evolution has been the inspiration for many learning algorithms. As reflected by the
literature, such methods have been used to solve many types of problem in a wide range of
domains. This would strongly suggest that some valuable properties of natural evolution have
been abstracted and reproduced. This in turn has motivated the use of certain evolutionary

algorithms for machine learning tasks.

This chapter begins with a review and classification of evolutionary algorithms. Then, the

ways in which these algorithms can be applied to the task of machine learning are surveyed.

2.1 An Introduction to Evolutionary Algorithms

Evolutionary algorithms refer to the class of algorithms that capture abstractions of the pro-
cesses of natural evolution. They belong to the class of probabilistic heuristic search algorithms.
Of these, the most widely studied are evolutionsstrategien (ES), evolutionary programming
(EP), genetic algorithms (GA) and Genetic Programming (GP). The four categories differ in

fundamental ways. Their similarities and differences are summarised in Table 2.1 (adapted



| [ES [EP [GA [ GD

Representation || Real-valued Real-valued Binary-valued Lisp
S-expressions

Self-adaptation || Standard deviations | Variances None None
and covariances (in meta-EP)

Fitness is Objective Scaled objective | Scaled objective | Scaled objective
function value function value function value function value

Mutation Main operator Only operator Background Background

operator operator

Different variants,

Recombination || important for None Main operator Main operator
self-adaptation

Selection Deterministic, Probabilistic, Probabilistic, Probabilistic,
extinctive extinctive preservative preservative

Table 2.1: A Comparison between ES, EP, GA and GP.

from (Back & Schwefel, 1993)). Of these categories, the genetic algorithm is perhaps the most
popular and most studied and it is the category we use to present the general ideas underlying

evolutionary algorithms.

2.1.1 The Canonical Genetic Algorithm

Genetic algorithms, introduced by John Holland in 1975 (Holland, 1975), are domain indepen-
dent search algorithms inspired by principles of population genetics. Using only very simple
mechanisms, genetic algorithms display complex search behaviour and have been used to solve
some difficult problems. As they require little knowledge of the task being tackled, genetic
algorithms are applicable to a wide variety of problems. See for example (DeJong & Spears,
1989; GALESIA95, 1995; Goldberg, 1994). A comprehensive survey of previous work on
genetic algorithms may be found in Alander’s extensive bibliography (Alander, 1994), which
provides pointers to the literature for a wide range of theoretical issues, variations of the basic

algorithm, and applications to real-world problems.

There are numerous variations on the genetic algorithm but we concentrate on the standard

or ‘canonical’ genetic algorithm. The GA may be described abstractly as follows.

Due to their origin, genetic algorithms are typically described using terminology stemming

from both evolutionary biology and computer science. A mapping is defined between the space



of candidate solutions to the task domain and binary-valued strings. The representation of a

solution is referred to as its genotype and its interpretation is referred to as its phenotype.

During the operation of the genetic algorithm a population of strings is maintained. This
corresponds to a sample of the space of candidate solutions. If the algorithm is successful, over
a number of iterations this population will converge on one or more strings that represent good

solutions to the task.

The algorithm may be described informally as follows. To begin with, the population
is initialised with strings chosen at random from all possible strings. The search for good
candidate solutions involves iterating a procedure, where each iteration is referred to as a
“generation”. Each generation comprises of a number of steps. New strings are derived from
existing strings using operators that loosely model genetic recombination and mutation. Strings
are chosen probabilistically from the population based on their fitness. These strings are
referred to as “parents” and are used in the construction of new strings. Mutation and crossover
operators (which are elaborated on below) create new “offspring” strings derived from the
parents. Each string in the population is then evaluated according to some objective function
that characterises the string’s performance within the task environment. Subsequently, a
proportion of strings are chosen to “survive” to the next generation. Strings that have high
objective function values with respect to the population mean fitness will have a proportionally
high chance of contributing to the next generation. This evaluation of a string is referred to

as its “fitness”. Algorithm 2.1 illustrates the basic algorithm.

During this search process, some strings will map onto solutions of high fitness, whereas
others will not. The genetic algorithm adaptively searches the space of candidate strings, by
biasing selection of strings to be replaced against those with poor fitness. As a result a trend

towards higher fitness values is possible, though not guaranteed.

New strings are created using the following two operations:

Mutation takes an existing string and derives a new one by performing a bit-reversal at

some random position, as shown in Figure 2.2. The frequency with which mutation is



procedure genetic_algorithm is
begin
initialise(Population);
evaluate(Population);

while not termination_criterion loop
parents = select_parents(Population);
crossover(parents);
mutate(parents);
evaluate(Population);
select_new_population(Population);
end loop

end genetic_algorithm;

Figure 2.1: The Canonical Genetic Algorithm.

performed is typically very low. But it enables a very small amount of random search

that guarantees that no point in the search space has zero chance of being traversed.

Ferent Lof1]1]ofof1]0]

v

Offpring o[ 1[1]1]0[1]0]

Figure 2.2: The mutation operator.

Crossover takes two parent strings and selects a random point along their length. This
divides the parent strings into two head parts and two tail parts. Then the tails are
exchanged, so that the head of parent 1 is concatenated with tail of parent 2 and vice-
versa. As a result two offspring strings are created as illustrated in Figure 2.3. There
exist many variations on the crossover operator and the reader is referred to (Davis,
1991, pp. 46-50) for an overview. The operator that has been described is referred to as

one-point crossover.

While there are many theoretical and empirical studies on the effect of crossover, there is



Parents Offspring

Figure 2.3: The crossover operator.

still no widely accepted theory to explain its behaviour or even to indicate when the use
of the operator may be advantageous. One informal view is that crossover propagates
new strings through the population by bringing together good partial solutions to form
superior ones. This is called the building block hypothesis (Goldberg, 1989). This is

described more formally in Holland’s Schema Theorem, see Appendix A.2.

Finally, once the population of strings has been evaluated according to some objective
function, it must be determined which subset is to survive to the next generation. The approach
used in the original genetic algorithm proposed by Holland was to select strings probabilistically
based on objective function value with respect to the average function value over all strings.
More precisely, given string s; is a member of population S and objective function f: s — R,
the probability of a string being chosen to be in the population at the next generation is defined

as

2.1.2 Search Properties of Genetic Algorithms

The genetic algorithm has a number of attractive properties. It is able to rapidly locate

solutions with high fitness in very large, complex and poorly understood search spaces. The
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literature describes a considerable amount of empirical evidence to support this.

It is understood that the GA searches by exploiting accumulating information about an
initially unknown search space. This acquired information is then used in order to bias subse-
quent search into useful subspaces. Even though an objective function may be discontinuous
and multi-modal, the GA is robust and less susceptible to local optima when compared
to other techniques based on hill-climbing and/or gradient-based search. Furthermore, the
genetic algorithm is inherently parallel, and easily lends itself to distribution over a number of

Processors.

There are a number of characteristics that distinguish evolutionary algorithms from other

(classical) optimisation procedures:

1. Traditional optimisation methods move from a single point to the next in the space of
candidate solutions. The genetic algorithm on the other hand maintains a population of

points.

2. Traditional optimisation methods make assumptions, such as the continuity of the ob-
jective function, or the existence of derivatives or uni-modality. These assumptions leave
such methods particularly susceptible to local maxima in multi-modal (many-peaked)

search spaces.

3. Search algorithms typically require auxiliary information. In contrast, the genetic algo-

rithm requires no further information other the objective function values.

However, the genetic algorithm is no panacea. To begin with it is confined to problem
domains where the cost, computational or otherwise, of evaluating candidate solutions cannot
be high as the GA requires a fairly high sampling rate.

Secondly, although good at searching spaces where the objective function is discontinuous
and complex, the genetic algorithm still requires a non-zero gradient in the objective function.
A spike is not easy to learn. Consequently, the selection of an objective function and a suitable

problem encoding will closely govern the efficiency of this algorithm.
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Thirdly, if, as suggested by the building block hypothesis, the power of the GA stems from
the combination of good building blocks, then the choice of a suitable problem encoding is
central to the successful application of this algorithm. It could, therefore, be argued that the
choice of representation is a way of bringing implicit knowledge to bear on a problem. Choose

the wrong encoding and no solution will be found.

Despite these shortcomings, the properties of the genetic algorithm have led to the GA
(and other evolutionary algorithms) being successfully applied to a wide variety of scientific and
engineering problems. This continued success strongly suggests that genetic algorithms capture
some valuable process from nature. This abstraction, embodied in the genetic algorithm,

corresponds to a highly efficient and robust search technique.

2.2 Machine Learning using Evolutionary Algorithms

2.2.1 Introduction

While the GA is often perceived as just a function optimisation method, it has also been used
for a variety of other problems. For example, the challenging task of discovering computer
programs. Thus one can speak of the genetic algorithm as a machine learning technique
(Mitchell, 1997, Chapter 9). The aim of the remainder of this chapter is to present a survey

and classification of approaches to using genetic algorithms to the problem of machine learning.

Evolutionary algorithms can be used for machine learning in a variety of ways, depending
on the data structures they are used to manipulate. DeJong (DeJong, 1988) identifies the

following three categories:

Parameters. A set of parameters are identified that control the system’s behaviour. By

modifying these values, the system’s performance can be altered. The role of the genetic
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algorithm is to discover sets of parameter values that optimise the objective function and

correspond to desirable system behaviour.

Complex data structures. For some problems, it is not sufficient to describe solutions as
a set of parameters. In problems such as the travelling salesman, bin-packing, and
scheduling, more complex data structures are required. A data structure may for example
be a set of elements such as an agenda, or a queue. The genetic algorithm therefore

searches the space of possible values that the complex data structures can adopt.

Programs. For some problems, event the solutions that can be expressed by data structures
is insufficient. Expressiveness can be extended further still by searching the space of
Turing complete procedures or programs. Discovering solutions in this set is the most
challenging of these categories as the space of computer programs is typically enormous,

if not infinite.

The use of evolutionary algorithms to discover parameters and complex data structures
are not addressed in this thesis. This work concerns only the last of these classes: using

evolutionary algorithms to discover programs.

2.2.2 Representation Issues in Machine Learning

Before examining the use of the genetic algorithm as a machine learning technique, the more
general issue of knowledge representation is addressed. A treatment of the relative merits of
different programming paradigms can be found in most good programming language texts.
However, the purpose of this section is not to reproduce this material, but to consider relevant

issues with a view to efficiently constructing hypotheses about the problem domain.

A program can be viewed as a mapping between a set of input values and a set of output
values. A programming language defines the set of legal mappings. Every language has two

components; its syntax and semantics. The syntaz of a programming language is concerned
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with the form of programs, i.e., how expressions, commands, declarations, etc., are put together
to form programs. The semantics, on the other hand, is concerned with the meaning of

programs, i.e., how they behave when executed on computers (Watt, 1990, page 3).

The languages in which solutions are to be expressed can be broadly classified into Proce-

dural and declarative languages.

Procedural Programming Languages

In procedural programming, a computation is expressed by the informal concept of an algo-

rithm. Statements are executed sequentially with assignment as the basic action. As put by

Watt:

The mapping from input to output is achieved indirectly by commands that
read input values, manipulate them, and write output values. The commands
of a program influence one another by means of variables held in storage. The
relationship between two given commands can be completely understood only
with reference to all the variables that they both access, and with reference to
all the other commands that access these same variables. Unless the program is
written with care and discipline, these relationships between commands can be very

complicated and hard to understand (Watt, 1990, page 230).

Difficulties arise when using genetic algorithms to evolve code in procedural languages
because of the relation between the syntax of the language and its semantics. Procedural code
is order dependent. Interchanging two lines of code can render a program meaningless. Since
procedural code is context sensitive, the meaning of a section of code can be determined by
minor changes to preceding code. For example, a punctuation symbol can change the entire

meaning of succeeding code.
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There is an unclear relation between the change in a program and the effects that this
change has during the program’s execution. The effect of a change on a program, be it by
mutation, crossover or any other operator will have obscure effects. Though programs may be
successfully evolved, such an approach does not lend itself to analysis and further study, as

any changes in programs can only be chance-based (DeJong, 1987).

Declarative Programming Languages

If a computation is expressed as a sequence of operations, the knowledge encoded in the pro-
gram is stored in an implicit manner. This knowledge is inextricably contained in procedures.
When knowledge is expressed explicitly it is easier to manipulate and can be used for different
purposes. In declarative programming languages, the mapping between program statements

and program meaning is clearer!.

Declarative programming languages may be split into functional languages and logic-based
languages (Fenton & Hill, 1993). A functional language specifies the solution to a given problem
as a collection of many-to-one transformations. A logic-based language, typically based on first-
order logic, is a many-to-many transformation and will generate not just a single solution, but

a set of solutions to any given particular application (Fenton & Hill, 1993, page 291).

The Functional Paradigm In functional programming, the program is a function (or group
of functions), typically composed of simpler functions. Programs are written entirely
within the language of expressions, functions and declarations. The relationships between
functions are very simple: one function can call another, or the result of one function

can be used as an argument to another function (Watt, 1990, page 230).

The Logic-based Paradigm In logic-based languages such as Prolog, the relation between

program syntax and its meaning is closely related. An algorithm can be separated

'Providing we ignore language impurities such as global variables in functional languages and assert, retract
and cuts (!) in logic-based languages.
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into procedural and declarative components. This is captured by Kowalski’s formula
Algorithm = Logic + Control (Kowalski, 1980, page 125). The semantics can be altered

in a modular way.

Summary

Programs in conventional programming languages, such as Pascal or Fortran, can be viewed
as linear strings of symbols. This would suggest that genetic algorithms which manipulate
strings would be highly suited to this task. Yet standard crossover and mutation operators
produce very few syntactically correct programs and even fewer that are semantically correct
(DeJong, 1987; DeJong, 1988). Operators for conventional languages (e.g. Fortran and Pascal)
are difficult to develop because of the complexity of the relationship between the syntax and
the semantics of the languages. The semantics for procedural languages make it more difficult

to reason about programs in such languages.

In machine learning, it is a program’s semantics that we wish to modify in a well-defined
way. Declarative languages such as pure Lisp and pure Prolog have semantics that is related
in a simple way to their syntax. These languages are therefore more suited to manipulation

and analysis. This thesis however focuses only on the logic paradigm.

2.2.3 The Syntax and Semantics of First-order Logic

This section presents a brief summary of the syntax and semantics of the propositional and
predicate calculi. The reader already familiar with first order languages may wish to skip the

remainder of Section 2.2.3.
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The Syntax of Propositional Language

Definition 2.1 (Alphabet) An alphabet of propositional logic consists of the following sym-
bols:

1. A non-empty set of atoms: P,Q,....
2. The following five connectives: —, A, V, —, <.

3. Two punctuation symbols: ‘(" and ‘).

Definition 2.2 (Well-formed formula) Well-formed formulas (wif) are defined as follows:

1. An atom is a formula.

2. If ¢ is a formula, then —¢ is a formula.

3. if ¢ and v are formulae, then so are (¢ A1), (pV ), (¢ — ), and (¢ <> ).

Definition 2.3 (Propositional language) The propositional language given by an alphabet

1s the set of all well-formed formulae which can be constructed from the symbols of the alphabet.

The Semantics of Propositional Logic

The syntax of a language specifies the set of well-formed formulae which can be constructed
from some alphabet. The semantics concerns the meaning of such formulae. A formula can
be either true or false depending on the truth or falsity of the simpler formulae which it is

comprised of.
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Definition 2.4 (Interpretation) Let L be a propositional language. Let A be the set of
atoms of L. Then an interpretation of L is a mapping from A to {T,F}. T and F are called

truth values.

Definition 2.5 (Satisfies) Let ¢ be a formula, and I an interpretation. ¢ is said to be true
under I if its truth value under I is T. I is then said to satisfy ¢. ¢ is said to be false under
I if its truth value is F under I. I is then said to falsify ¢.

Definition 2.6 (Model) Let ¢ be a formula, and I an interpretation. I is said to be a model
of ¢ if I satisfies ¢. Similarly, let 32 be a set of formulae, and I an interpretation. I is said to
be a model of 3 if I is a model of all formulae ¢ € 3.

Definition 2.7 (Logical Consequence) Let X be a set of formulae, and ¢ a formula. Then
¢ 1is said to be a logical consequence of ¥ (written as ¥ = ¢), if every model of ¥ is a model
of . If ¥ = ¢, one can say that ¥ logically implies (or just implies) ¢.

Similarly, let ¥ and I' be sets of formulae. Then I' is said to be a logical consequence of

5 EDD), if L ¢ for every formula ¢ € T'.

If ¢ is not a logical consequence of ¥, we write ¥ [~ ¢, and similarly ¥ £ T' if not ¥ =T

Definition 2.8 Let ¢ be a formula. Then:

1. ¢ is called valid, or a tautology, if every interpretation is a model of ¢. This can be

written as |= ¢. ¢ is called invalid otherwise.
2. ¢ is called satisfiable, or counsistent, if some interpretation is a model of ¢.

3. ¢ is called inconsistent, or unsatisfiable, or a contradiction, if no interpretation is a

model of ¢.
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The Syntax of the Predicate Logic

Definition 2.9 (Alphabet) An alphabet of first order logic consists of the following symbols:

1.

2

A set of constants: a,b,....
A set of variables: u,v,w,z,y,...,

A set of function symbols: f,g,.... Each function symbol has a natural number (its arity)
assigned to it. The arity of a function refers to the number of arguments the function

takes.

A non-empty set of predicate symbols: P,Q,.... FEach predicate symbol has a natural
number (its arity) assigned to it. The arity of a predicate refers to the number of

arguments it takes.
The following five connectives: =, A, V, —, ¢>.

Two quantifiers: 3 (called the existential quantifier) and ¥V (called the universal gquanti-

fier).

Three punctuation symbols: ‘(’, ‘)" and .

The sentences of first-order logic are referred to as well-formed formulae (wffs). In order

to define wffs, a term must be defined:

Definition 2.10 (Term)

1.

2.

3.

A wvariable is a term.
A constant is a term.

If f is an n-ary function symbol and ti,...,t, are terms, then f(t1,...,t,) is a term.
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Definition 2.11 (Well-formed formula) A well-formed formula (wff) is defined recursively

as follows, :

1. If P is an n-ary predicate symbol and t1,...,t, are terms, then P(t1,...,t,) is a formula,

called an atom.
2. If ¢ is a formula, then —¢ is a formula.

3. if ¢ and 1 are formulae, then so are (p A1), (P V ), (¢ — ), and (¢ <> ).

4. if ¢ is a formula and x is a variable, then (Vz ¢) and (3z ¢) are formulae.

Definition 2.12 (First order language) The first order language given by an alphabet is
the set of all (well-formed) formulae which can be constructed from the symbols of the alphabet.

The Semantics of the Predicate Calculus

Definition 2.13 (Pre-interpretation) A pre-interpretation J of a first-order language L

consists of the following:

1. A non-empty set D, called the domain of the pre-interpretation.
2. Each constant in L is assigned an element of D.

3. Each n-ary function symbol f in L is assigned a mapping Jy from D™ to D.

Definition 2.14 (Interpretation) An interpretation I of a first-order language L consists

of the following:
1. A pre-interpretation J, with some domain D, of L. I is said to be based on J.
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2. Each n-ary predicate symbol P in L is assigned a mapping I, from D" to {T,F}.

Definition 2.15 (Satisfies) Let ¢ be a formula in the first-order language L, and I an
interpretation of L. Then ¢ is said to be true under I if its truth value under I is T. I

1s said to satisfy ¢. Similarly, ¢ is said to be false under I if its truth value under I is F'.

Definition 2.16 (Model) Let ¢ be a formula, and I an interpretation. I is said be a model
of ¢ if I satisfies ¢. Similarly, let 32 be a set of formulae and I an interpretation. I is said to
be a model of 3 if I is a model for all formulae ¢ € X..

Definition 2.17 (Logical consequence) Let X be a set of formulae, and ¢ a formula. Then
¢ is said to be a logical consequence of ¥ (written as ¥ = ¢), if every model of ¥ is also a

model of ¢. One can say ¥ (logically) implies ¢.

Similarly, let 3 and T be sets of formulae. Then T is said to be a logical consequence of %

(X ET), if ¥ = ¢, for every formula ¢ € T.

Definition 2.18 Let ¢ be a formula. Then:

1. ¢ is called valid if every interpretation is a model of ¢. This can be written |= ¢. ¢ is

called invalid otherwise.
2. ¢ is called satisfiable or consistent if some interpretation is a model of ¢.

3. ¢ is called inconsistent, unsatisfiable, or a contradiction, if no interpretation is a model

of ¢.
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Normal Forms

Formulae can be built in different ways yet be logically equivalent. For the purposes of
simplification and computational efficiency it is invaluable to impose a certain structure on

formulae. These structures are referred to as normal forms.

Definition 2.19 (Literal) A literal is an atom or the negation of an atom. A positive literal

s an atom, a negative literal is the negation of an atom.

Definition 2.20 (Clause) A clause is a formula of the form ¥y ...Vxs(L1V---V Ly,) where

each L; is a literal and x1,...,xs are all the variables occurring in L1V ---V Ly,.

Example 2.1 The following are clauses
VaVyVz(p(z, 2) V ~q(z,y) V =r(y, 2))
VaVy(-p(z,y) V r(f(z,y),a)))

We define a particular kind of clause that will be widely used in the remainder of this

thesis. We refer to this type of clause as a rule.

Definition 2.21 (Rule) A rule is a clause of the form
V.Z‘V.’ES(Al V---VA]CV—'Bl V---\/—|Bn)

where A1,...,Ag,B1,..., By, are atoms and x1,---,Zs are all the variables occurring in these

atoms. Rules may be expressed in the equivalent form:
Al,...,Ak < Bi,...B,

where all the variables are assumed to be universally quantified, the commas in the antecedent
B1, ..., B, denote conjunction and the commas in the consequent A1, ..., Ay denote disjunc-

tion.
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Definition 2.22 (Conjunctive normal form) A formula is in conjunctive normal form if
it s a conjunction of one or more conjuncts, each of which is a disjunction or one or more

literals

Definition 2.23 (Disjunctive normal form) A formula is in disjunctive normal form if it

s a disjunction of one or more disjuncts, each of which is a conjunction or one or more literals.

Example 2.2

(AAB)V (mAAC)
(ANBA-A)V(CA-B)V(AAN-C)
A

AANB

AV(BACQC)
are in disjunctive normal form, while the following are in conjunctive normal form:

(BV—=C) A (AV D)
A

AANB

AV-B

AN(BVA)A(=BV A).

The above definitions represent only a selection of the basic concepts of mathematical logic.
A more extensive introduction may be found in (Mendelson, 1987; Lloyd, 1984; Nienhuys-
Cheng & de Wolf, 1997).
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2.2.4 Approaches to Evolving Formulae of First-order Logic

To re-cap the argument so far: evolutionary algorithms have been introduced and their search
properties have been described. Subsequently, the modular semantics of declarative languages
motivates their use for describing hypotheses. This led to a brief review of propositional and

predicate calculi.

In the following sections, we examine how evolutionary search and the logical setting can
be combined. In order to use an evolutionary algorithm to search through a space of logic

formulae, the following choices must be made:

1. select a suitable representation to express formulae;
2. select operators that efficiently search the space of formulae;

3. establish a method of evaluating formulae.

The third point involves estimating the utility of an hypothesis and is a problem common to
all machine learning paradigms. We address this issue in Section 2.6. First, though we focus on
the first two points which are inextricably related. Previous work in choosing a representation

for formulae has taken one of two directions:

1. While we want to manipulate logic formulae, the canonical genetic algorithm operates
on fixed-length binary strings. One approach has been to try to minimize changes to the
genetic algorithm by preserving the binary representation. A mapping is defined between
binary strings and logic formulae. This is appealing as the genetic operators can remain
largely unchanged and therefore the properties of the GA will be preserved. However,
the task of constructing a suitable mapping from formulae to binary strings is not easily

resolved. Secondly, this approach involves devising a novel mapping for each problem

tackled.
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2. The alternative approach has been to abandon the binary representation. This requires
that the operators be suitably modified to work effectively on complex non-string objects.
While this may be appealing for most machine learning problems, there is the risk of

losing the efficient search properties of the GA.

These two approaches are reviewed in Sections 2.3 and 2.4.

2.3 Mapping Formulae to Fixed-length Strings

2.3.1 Rationale

Why should one try to map formulae to binary strings? It was believed that the efficient
search of genetic algorithms was due to the binary representation. Holland argued that
every evaluated string offers partial information about the expected fitness of other groups
of substrings (schemata). In his Schema Theorem (Holland, 1975), he demonstrated that the
number of schemata processed during each string evaluation is optimal for a binary alphabet.

So to optimise evolutionary search it was widely believed a binary string should be used.

But it has since been argued that maximal implicit parallelism is not confined to bi-
nary string representations (Antonisse, 1989). In a generalisation of Schema Analysis, called
Forma Analysis (Radcliffe, 1994), Radcliffe shows that optimal implicit parallelism can still
be achieved providing the representation satisfies a number of specific conditions (Radcliffe,

1991).

Nevertheless, binary-mapped approaches represent a significant proportion of the algo-

rithms for evolving logic formulae and continue to be developed.
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2.3.2 Language Templates

One can formalise the relation between strings and formulae by defining a language template.
Given a finite alphabet A, a string s of length k is the concatenation aias - - - ax where any a;

is an element of A.

Definition 2.24 (Language template) Given a first order language L, and the set S of all
strings of length k over alphabet A, a language template denoted M (L, S) is a binary relation

between the set of formulae in L and the set of strings S.

Definition 2.25 (Strongly complete) A language template M(L,S) is strongly complete
if for any formula ¢ € L and any string s € S (¢,s) € M.

However, constructing a strongly complete language template is often difficult. One often
finds that for some formulae there is no corresponding string; and conversely, for some strings

there is no corresponding formula.

Language templates based on propositional logic

The earliest language templates were developed by Holland and Reitman (Holland, 1986).
Their approach is based on mapping propositional formulae to ternary strings (i.e. an alphabet
with three elements). This approach has subsequently been used and developed in a number
other evolutionary learning systems (Smith, 1980; Wilson, 1987; McCallum & Spackman,
1990; DeJong & Spears, 1991; DeJong et al., 1993; Greene & Smith, 1993; Greene & Smith,
1994). Inevitably, each system varies in detail, but the underlying principles of their template

languages share some common features.

A formula ¢ is a disjunction of rules ¢ =11 V7o V-V 1. Each rule r; has the following

form Ay NAg AN---NA, = CL ANCy A--- A Cp, where each A; and each C; is an atom or a
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disjunction of atoms. The left hand side of the rule is referred to as the antecedent, and the

right hand side is the consequent.

In order to map formulae of this kind to strings, atoms of the problem domain are grouped
together into one or more sets. Each set of atoms is mapped to a binary string and the strings

concatenated. As a result a string represents a number of conjuncts of atoms.
To represent more general formulae an additional symbol is added to the binary alphabet.

This symbol is called the ‘don’t care’, denoted # and allows internal disjunction to be expressed.

Strings are therefore defined over the alphabet {0, 1, #}.

Example 2.3 Let A= {Q,R,S,T},B={U,V} be the sets of atoms representing antecedents
and C = {W,X,Y,Z} the consequents. Let the language template be AN B — C with the

following mapping between strings and atoms:

00 & @ 0 & U 00 & W
01 < R 1 &V 01 & X
10 & S 10 & Y
11 & T 11 & 7

With this template it is possible to construct propositional formulae as follows:

00 1 11 QAV = Z
01 0 10 RAU Y
10 1 00 SAV W

Further, by introducing the don’t care symbol to represent disjunction it is possible to

represent more general formulae:

00 # 11 QUVV)—=Z

#0 0 11 (QVS)ANU - Z

## 0 11 (QVSVRVT)ANU = Z

#4# # 00 (QVSVRVT)AUVV) > W
00 0 ## QAU - (WVXVYV2Z)
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The language can be made yet more expressive by allowing negation to be expressed. This

may be achieved by adding another bit to the template for each atom and/or conjunct.

Since these strings closely resemble the binary strings of a genetic algorithm, mutation and
crossover can manipulate these strings in the conventional manner. Another important issue
is whether a string should represent an entire formula or just a rule. This choice affects the

role of crossover, and is addressed in greater detail in Section 2.6.

Extending language templates to predicate logic

The language template described in the previous section only allows propositional formulae to
be represented. A template to handle more expressive formulae was proposed by Giordana and
Sale (Giordana & Sale, 1992) and has seen further development and application in (Giordana
& Saitta, 1993; Giordana et al., 1994; Hekanaho, 1996a; Hekanaho, 1998). In the following

discussion, a simplified version of this language template is described.

As in the propositional setting, a formula ¢ is a disjunction of rules, ¢ =71 Vra V- Vry,.
Each rule consists of a single-predicate consequent and an antecedent that is a conjunction of
predicates

TZ':C(—Pl/\PQ/\"'/\Pn.

Each of these predicates is internally disjunctive and denoted P(X1,..., Xy, [v1,---,vm]) where
the X;s are variables, and [v1,...,v,] represents the disjunction v; V - - - V v, of constants v;.
In addition, if the set of vy, vs,...,v,, does not cover all possible values, the remainder are

represented by the symbol *. In effect, this corresponds to the expression —w; A=wg A+« + A =vy,.

The language template is a conjunctive formula split into positive (¢) and negative (1)

parts

¢($17' .. 7$n) A _'Elyla' .. aym[¢(x17' - Ty Yl - - - ayM)]

where both ¢ and v are a conjunction of predicates. The template contains all literals and any

formula may be obtained by deleting literals from it. A string represents a formula as follows.
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For each bit in the string there is a corresponding literal in the template. The value of a bit

determines the presence or absence of a literal value in the formula.

Example 2.4 Let colour/2, shape/2 be binary predicates that can take on values including
{red, blue} and {square, triangle} respectively. For the sake of simplicity, we illustrate only the

positive part of the template. The predicates are mapped to a binary string as follows:
colour(z,[red,blue,*]) A shape(z,[square,triangle,«])
——
[1]o]o0] [1]1]o0]
This string corresponds to the formula

colour(z,red) A shape(z,[square V triangle]).

This approach to mapping formulae to binary strings is attractive as the mapping is
strongly complete. However, it has the drawback that to represent many values long strings

are required?

Summary

The use of a language template to relate formulae with binary strings has the attractive prop-
erty that minimal changes are required to the conventional genetic algorithm. Consequently,
any results obtained from analysis of conventional GAs are also applicable to evolving logic
formulae. However, constructing a mapping to strings is not easy, it may not confer any
computational advantage and may merely render the search behaviour opaque. In the next
section, we examine the alternative: modifying the evolutionary operators to manipulate more

complex, non-binary representations.

*Work on the G-NET algorithm (Anglano et al., 1998) is currently addressing the problem of long strings
caused by representing numeric values with a binary string. A hybrid representation is being developed to allow
efficient representation of both predicates and numeric values. Predicates are to be represented with binary
values as before, however, numerical values are not mapped to a binary string (Giordana, 1999). The mutation
and crossover operators will have to be altered to manipulate a mixture of Boolean and numeric values.
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2.4 Evolving Symbolic Representations of Formulae

The crossover and mutation operators of a genetic algorithm are (very) loosely based on
Mendelian genetics. However, strict adherence to these operators is not necessary. According
to DeJong, operators may be modified providing the process of distribution of trials is not
disrupted and the formation of building blocks is encouraged (DeJong, 1987). In the symbolic
approach, the minimal alphabet principle and conventional fixed-length representation are

abandoned.

In Grefenstette and Schultz’s SAMUEL (Grefenstette, 1989; Schultz & Grefenstette, 1990;
Grefenstette, 1992c) a formula ¢ is a conjunction of rules ¢ = r1 Arg A -+ Ary,. Each rule
r; has the following form Ay A Ag A--- N A, = C1 AN Cy A --- A Cp, where each A; and each
C; is an attribute-value pair that has a truth value. Examples of attribute-value pairs include
(height = medium), (velocity > 70.0) and (20 < altitude < 40). An example of crossover on
these high level rules, adapted from (Grefenstette, 1989), is shown below. Given two parent

rules with the indicated crossover point

-+« A (0 > time > 3) || A (100 > range > 300) A - - - (turn = 45)

%
-+ A (2 > time > 6) || A (400 > range > 800) A--- — (turn = 90)
one obtains the following offspring

-+ A (0 > time > 3) || A (400 > range > 800) A - --

1

(turn = 90)
-+ A (2> time > 6) || A (100 > range > 300) A--- — (turn = 45).

Similarly, crossover points could also be permitted within attribute-value propositions.

With parent rules

<+ A(0>time || >3)A--- — (turn = 45)

<+ A(2>time || >6)A--- — (turn = 90)
the following offspring are constructed

«+A(0>time || >6)A--- — (turn = 90)

o A(2>time || >3)A--- — (turn = 45),
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Similar high-level representations are adopted in other learning approaches (Janikow, 1993;
Venturini, 1993; Radcliffe & Surry, 1994a; Flockhart & Radcliffe, 1996). The propositional

framework has also been extended to the relational setting (Augier et al., 1995).

All of these approaches to evolving logic formulae by an evolutionary algorithm express logic
formulae as a linear sequence of propositions or terms. A limitation of this approach is that the
structure of rules must be defined a priori since it is not easy to adapt crossover to operate on
variable length strings. Non-linear encodings of formulae such as trees circumvent this problem
elegantly. Solutions need not be confined to a fixed structure, but may adopt an arbitrary
shape and size. Crossover, however, must be suitably altered. Tree-based encoding has been
popularised by genetic programming (Koza, 1992), where each node in the tree represents a
Lisp S-expression. A tree-based approach to inducing logic formulae was developed by Wong
and Leung (Wong & Leung, 1994; Wong & Leung, 1995c). The Genetic Logic Programming
System (GLPS) induces logic formulae in the form of function-free first order logic programs
using evolutionary algorithms. A logic program (or set of clauses) is represented as a collection
(forest) of AND-OR trees, where the leaves correspond to the predicate symbols and terms of

the domain.

Example 2.5 Representation in the Genetic Logic Programming System Figure 2.5 represents

the following clauses:

stable(x) < has_support(x)
stable(z) <« bottom(z,y) A flat(y)

stable(z) < bottom(z,y) A concave(y)

New formulae are constructed by crossover between the two parent formulae. Given two
parent trees, a crossover point is randomly chosen on each. The subtrees below the crossover
point are exchanged resulting in two new trees. Crossover can be applied to whole formulae,
to clauses, or to antecedent literals providing the root node of each has the same number of

elements.
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st abl e(x)

flat(y) concave(y)

bot t om(x, y) bot t on( X, y)

Figure 2.4: Tree representation of formulae in the genetic logic programming system.
Example 2.6 Let there be two parent formulae,

stable(x) <« bottom(z,y) A flat(y) A concave(y) N has_support(z)

and
stable(z) < bottom(x,y) A flat(y)

stable(z) < bottom(x,y) A concave(y)

These formulae are shown in tree form in Figure 2.5. The crossover indicated results in

the following formulae:

stable(z) < bottom(x,y) A concave(y) A concave(y) A has_support(x)

and
stable(z) < bottom(x,y) A flat(y)

stable(z) <« bottom(z,y) A flat(y)

The structure and size of new formulae is not constrained, in fact offspring typically have
different size and structure from their parents. Consequently, the mapping of formulae to a

tree structure permits the elegant manipulation of formulae by a crossover operation.
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st abl e(x) st abl e(x)

has_support (x)

bot t on( x, y) //”56”0”()(,)’)

stabl e(x) st abl e(x)
X

has_support (x)

bot t on( x, y) /,’Eo’tt/or’r(x,y)

Figure 2.5: Crossover in the genetic logic programming system.
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Summary

It is immediately apparent that symbolic representation of formulae allows easier representation
of domains, especially when there are attributes that have a large number of values, such as
integer and real types. The problem of constructing a mapping to fixed-length strings is avoided

altogether.

2.5 Complex operators

A further development in the use of evolutionary algorithms to evolve logic formulae is the
use of more sophisticated operators. Such operators are either variants on the conventional
genetic operators that are sensitive to the syntax of candidate solutions; or, the operators are
adopted from other rule induction systems. For instance, operators that generalise or specialise

formulae. In the following two sections we examine these types of operators.

2.5.1 Grammar-sensitive Crossover

Evaluating formulae that are syntactically incorrect is obviously pointless and a waste of com-
putational resources. How can one ensure that all evolutionary operations produce syntactically
correct formulae? Conventional evolutionary approaches to constructing formulae involve much
effort in formulating a suitable representation and operators to minimise syntactic errors.

Unfortunately, this is a problem that must be re-addressed for each problem domain.

An alternative approach is to define the structure of formulae with a grammar thus making
the syntax of formulae explicit. This approach has also been adopted in other machine learning
paradigms, e.g. (Cohen, 1994). As an example, consider the problem of predicting a Boolean
function (multiplexer) over the alphabet {A, B,C,D}. The syntax of classifiers is specified
with context-free grammar G;. Grammar G, is represented in Backus-Naur Form(BNF) as

follows:
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(Classifier) ::= (DNF)

(DNF) = (Term) V (DNF) | (Term)
(Term) == (Literal) A (Term) | (Literal)
(Literal) == (Variable) | ~(Variable)
(Variable) == A|B|C|D

A formula can be represented as a derivation tree with respect to a grammar. For example,
given grammar G and the formula (A A B) V (=C A D), the corresponding derivation tree is
shown in Figure 2.6. Derivation trees can be manipulated by a tree-type crossover operation

similar to the operator in genetic programming (Koza, 1992).

To guarantee correctness of offspring solutions, crossover and mutation operation are mod-
ified as follows. Mutation may only replace a symbol with the same terminal or non-terminal.

In crossover, crossover-points are constrained to those of the same non-terminal.

Early attempts towards constraining search with an explicit grammar include GA-Miner
(Radcliffe & Surry, 1994a), STGP (Montana, 1994; Haynes et al., 1996), and LOGENPRO
(Wong & Leung, 1995d; Wong & Leung, 1995b; Wong & Leung, 1995a; Wong & Leung, 1996)
and (Whigham, 1995; Whigham, 1996; Gruau, 1996). Successful applications include medical
domains (Ngan et al., 1998; Ngan et al., 1999) and ecological modelling (Whigham & Crapper,
1999).

The grammar-based approach has the advantage of allowing domain knowledge to be
incorporated in a declarative fashion. The use of such explicit grammars allows an elegant

approach to constructing formulae that ensures their syntactic legality?.

2.5.2 Generalisation and Specialisation Operators

A second significant development has been the incorporation of operators that generalise or

specialise previous descriptions. There are three types of approach:

30One can even evolve programs of non-trivial languages such as C simply by using the appropriate grammar.
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<Cl assifier>

<DNF>
<Ter np \ <DNF>
<Literal > /A <Terne <Ter np

<Variable> <Literal > <Literal > /\ <Ternp

A <Variabl e> —/ <VariablexLiteral >
B (o <Vari abl e>
D

Figure 2.6: Derivation tree for the formula (A A B) V (=C A D) given grammar G;.
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Add/remove conditions. One approach has been to supplement the genetic operators with
operators that add or remove propositions from a formula. This is in a similar vein to
the operators described in (Michalski, 1983). This is the approach adopted in GABIL
(DeJong & Spears, 1991; DeJong et al., 1993), GIL (Janikow, 1993), SAMUEL (Grefen-
stette, 1989; Schultz & Grefenstette, 1990; Grefenstette, 1992c; Grefenstette, 1992a;
Grefenstette, 1992b), SIA01 (Augier et al., 1995), and REGAL (Giordana & Saitta,
1993; Giordana et al., 1994; Neri, 1997).

Generalising /specialising crossover. Several algorithms including DOGMA (Hekanaho,
1996a; Hekanaho, 1997; Hekanaho, 1998), GA-SMART (Giordana & Sale, 1992), and
REGAL (Giordana & Saitta, 1993; Giordana et al., 1994; Neri, 1997) use specialising and
generalising crossover operators. Generalisation begins by randomly selecting a number
of predicates and selecting two parent formulae. If any of the randomly chosen predicates
is common to both, then it remains unchanged, however, if it exists only in one parent,
it is dropped from the offspring. Conversely, for specialisation, if a predicate occurs
only in one parent, it will occur in the offspring. This heuristic approach is developed
further in GIL (Janikow, 1993). In GIL, two rules are selected at random. To construct
a generalisation, they are replaced with their most specific generalisation. Conversely for

specialisation, two parent rules are replaced with their most general specialisation.

Attribute/predicate hierarchies To aid generalisation and specialisation, a number of
algorithms allow domain knowledge to be specified in the form of an attribute hierarchy.
Attributes are ordered by generality. As a result, specialisation replaces a value with one
further down the hierarchy, while generalisation moves up. An example of an attribute
hierarchy is shown in Figure 2.7. Algorithms adopting this approach include SAMUEL
(Grefenstette, 1989; Schultz & Grefenstette, 1990; Grefenstette, 1992c; Grefenstette,
1992a; Grefenstette, 1992b), GA-MINER (Radcliffe & Surry, 1994a; Flockhart & Rad-
cliffe, 1995; Flockhart & Radcliffe, 1996) and SIAO1 (Augier et al., 1995),
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Figure 2.7: An attribute hierarchy (adapted from (Grefenstette, 1992b)).

In addition to structured attributes, SIAQO1 also extends generalisation and specialisation
operators to use a predicate hierarchy. Predicates may be defined in a hierarchical manner
according to the problem domain. For instance, one might specify vehicle subsumes car. A

generalisation operator replaces the occurrence of a specific predicate by a more general one.

Other systems of particular interest are GA-CIGOL (Yamamoto et al., 1995) and Whigham
and McKay’s unimplemented system which will be referred to as W&M (Whigham & McKay,
1994). Whigham and McKay observe a close similarity between crossover in genetic program-
ming and resolution in logic programming and inverse resolution in inductive logic program-
ming. However, no further work has been done in this direction. GA-CIGOL manipulates
bit-strings and uses a GA in a conventional manner. But the string is not mapped to a
formula, instead it corresponds to a sequence of inductive inference steps to perform on a seed
example. The substrings denote the inverse resolution operators truncation, absorption and
intra-construction. The formula can be constructed by applying the inductive inferences to

the seed.

Clearly, the evolutionary framework is very flexible. Additional operators may be used
to conjecture candidate solutions. However, the need for such a multi-strategy approach
indicates that different operators have different merits. Furthermore, this is symptomatic

of an inadequate theory on the construction of candidate solutions.
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2.6 Fitness of Formulae and the Rule vs. Rule-Set Issue

2.6.1 Rules versus Rule-Sets

Sections 2.3 and 2.4 have described the use of evolutionary algorithms to search for well-formed
formulae. Recall that one approach is by mapping formulae to binary strings and the other
is to manipulate symbolic representations directly. However, an open issue common to both
approaches is what should the population represent? One approach is to use the population
to represent a single formula; any part of the formula must compete with all other parts to
ensure it remains in the formula. Alternatively, the population represents a set of competing
formulae; formulae must compete with one another to model the problem domain. This may

be expressed more rigorously as follows.

Definition 2.26 (Rule mapping) Let ¢ = ¢1 A pa A--- A\ ¢y, be a formula and P be the
population of an evolutionary algorithm where P = {I1,I,...,I,} and each I; is an individual.

A rule mapping is a binary relation M between each individual I; and formula ¢;, where
M = ((¢1, 1), (P2, L2); - - -, (P, In))-

Consequently, a population P and a formula ¢ are related.

Example 2.7

IL: ¢
I: ¢
< ’
L Iy ¢n )
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Definition 2.27 (Rule-set mapping) Let ® = {¢1, d2,...} be a set of formulae and P =
{I1,I,...,I,} be the population of an evolutionary algorithm. A rule-set mapping is a mapping

between each individual I; and a formula ¢ € ®.

Example 2.8

r

Li: graNpipgN... ANd1m
ILy: ¢aiANpaoN...Npam

. I, : ¢n,1A¢n,2/\---A¢n,m )

The first work on evolving declarative representations was undertaken by Holland and
Reitman (Holland & Reitman, 1978; Holland, 1986) in which they evolved propositions of
first order logic. Holland’s system adopted the rule-mapping approach. Subsequently, Smith
(Smith, 1980; Smith, 1984) used a rule-set mapping in his LS-1 system. As a result of this early
work, a system that adopts a rule mapping is termed a Michigan approach, while a system

that employs a rule-set mapping is called a Pitt approach (DeJong, 1988).

The distinction between using evolutionary algorithms with the rule mapping and rule-set
mapping is of particular importance; the role of the evolutionary operators in each approach

is quite different and governs the logic formulae conjectured.

In most problem domains of interest, a solution consists of a set of rules. Consequently, with
a rule-set mapping, each individual in the population represents a complete candidate solution.
An important advantage of this approach is that the fitness of an individual takes into account
rule interactions. However, the solution encoding is more complicated and longer. Furthermore,
genetic operators have to be aware of the boundaries between rules, which requires modification

of the standard genetic operators.

In the rule-mapping approach, the encoding of the individual is both simpler and shorter
and since the size of the search space is exponential in the length of the string, the search space

will also be smaller. However, the problem of constructing a complete solution is shifted from

40



finding the right solution in the search space to maintaining a population of partial solutions.

This causes three problems.

Firstly, since rules must compete to survive in the population, it is necessary to estimate
the utility of a rule. When several rules are required to operate in conjunction, how should
one determine their individual utility? The game of chess is a useful analogy. No individual
move is alone responsible for winning or losing the game; it is the sequence of moves that is

decisive. This is an instance of the well-known credit assignment problem.

Secondly, evolutionary algorithms tend to converge on a unique solution. While this may
be suitable for many problem domains, for rule discovery based on the rule-mapping approach,
convergence is highly undesirable. As an example consider a classification problem, where the
target classifier is represented by the disjunction of two or more rules. Convergence to a single
‘optimal’ rule corresponds to a suboptimal classifier (rule-set). Consequently, an evolutionary
algorithm must encourage the location and maintenance of multiple partial solutions in the

population. In evolutionary algorithms this is called niching.

Finally, another problem that arises when the evolutionary algorithm must maintain mul-
tiple partial solutions concerns the crossover operator. Crossover of different partial solutions
(i.e. disjuncts) will in general lead to solutions of lower fitness than that of the parents. As
a concrete example, consider the problem of learning the Boolean function f = XOR(z,y),
where 01 and 10 are solutions with high fitness, while 00 and 11 are solutions of low fitness.
In this case it is clear that crossover of the two good solutions will result in the poor solutions.
Although this example is rather contrived, in general there is an advantage of limiting crossover
among the individuals of the same partial solution. This is called restricted mating. In the

next sections, we discuss how these limitation of the rule-mapping approach are addressed.

2.6.2 Convergence and Disjunctive Formulae

Approaches to niching are typically based on altering either the evolutionary algorithm’s

selection operator as in crowding or the fitness function as in fitness sharing (Mahfoud, 1997).
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There also exist approaches that incorporate non-genetic operators to group partial solutions

together. We refer to these approaches as grouping operators.

Crowding (De Jong, 1975) is based on using a modified selection operator that inserts new
solutions into the population by replacing similar solutions. This makes selection pressure
higher amongst similar solutions and thereby encourages the formation of subpopulations.
However, a distance measure is required to quantify the similarity of rules. This is particularly
difficult with relational rule representations where there is no domain-independent distance

metric (Giordana et al., 1994).

In fitness sharing, the fitness function penalises similar solutions by making them share their
fitness. Again, this makes selection pressure higher amongst similar solutions and encourages
the formation of subpopulations. But as with crowding, fitness sharing also requires a suitable

similarity measure.

Fortunately, the problem of choosing a similarity measure can be avoided in the classifica-
tion setting. In example sharing all positive ezamples are assigned an equal portion of fitness
and the fitness of any one example must be divided between all rules that cover it. Perhaps,
the most extensively analysed approach to example sharing is REGAL’s Universal Suffrage
operator. According to (Giordana & Neri, 1995) “if any disjunct, however small, is necessary for
covering a part of the concept extension, the selection mechanism is ‘guaranteed’ to maintain it
in the population.” Variants of example sharing are also described in (McCallum & Spackman,
1990; Greene & Smith, 1993; Horn & Goldberg, 1994) and an empirical investigation may be
found in (Hekanaho, 1996b).

In the niching methods described above, each niche corresponds to a disjunct and so a
candidate solution is made up of rules from several niches, for instance the best rule from
each niche. In this approach, each niche contains similar individuals which are in strong
competition with one another. An alternative approach is to group dissimilar individuals.
The niche corresponds to a collection of disjuncts and thus represents a complete candidate
solution. There is little or no competition among members of this niche. This approach is

adopted in (Shu & Schaeffer, 1991; Hekanaho, 1995; Hekanaho, 1998). New operators which
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we refer to as grouping operators are used to explicitly enforce or break a rule’s membership
of a niche. The rules of a niche are evaluated together and rules help one another if they cover

different parts of the training data.

To avoid disruptive crossover between different disjuncts mate restriction has to be in-
troduced. For example, in (Hekanaho, 1995), each rule in the population has a label which
identifies which disjunct it belongs to and crossover operations are more likely between rules

with the same label.

Clearly, population convergence represents a problem when learning disjunctive formulae

in the rule-mapping approach, and additional mechanisms are needed to compensate.

2.6.3 Problem Setting and Fitness Functions

This thesis is concerned only with supervised learning, that is, where there is feedback to
quantify performance. Furthermore, we restrict treatment to two general settings for supervised

learning: control of discrete-time dynamical systems and classification.

In the former, the learning algorithm interacts with an environment which is a discrete-time
dynamical system. By selecting between a number of actions, the learning algorithm causes
the environment to change state each of which has a corresponding payoff. The fitness of a
control strategy may be defined as a function of this payoff. This approach was adopted in

learning classifier systems (Holland, 1986; Smith, 1980) and their derivatives.

In the classification setting, a training set is a set of examples that have been pre-classified
into a number of discrete classes. The fitness of a classifier is defined as a function of
the correctly classified training instances and typically some additional measure of classifier
complexity, e.g. (DeJong et al., 1993; Giordana et al., 1994; Greene & Smith, 1994; Flockhart
& Radcliffe, 1995).
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System Propositional/ | Symbolic | Rule/ | Non-genetic Domain
Relational Rule-set | operators Knowledge

BOOLE propositional no rule no no

COGIN propositional no rule no no

GABIL propositional no rule-set yes no

DOGMA relational no rule no seeding/speciation’

GA-CIGOL relational n/at rule no no

GA-MINER propositional yes rule-set yes attribute hierarchy

GA-SMART relational no

GIL propositional yes rule-set yes seeding

GLP relational yes rule-set no seeding

LOGENPRO relational yes rule-set no grammar, seeding

M&S propositional no rule no no

M&O propositional no rule yes no

M-LCS propositional no rule no no

NEWBOOLE | propositional no rule no

P-LCS propositional no rule-set no no

REGAL relational no rule yes seeding

SAMUEL propositional yes rule-set yes seeding
attribute hierarchy

SIA propositional yes rule yes attribute hierarchy

SIA01 relational yes rule yes attribute hierarchy&
predicate hierarchy

W&M relational yes rule yes no

1 Background knowledge guides mate selection in crossover.
I A symbolic/non-symbolic classification is not applicable in GA-CIGOL because formulae
are not represented explicitly.

Table 2.2: A Summary of Genetics-based Machine Learning Systems.
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2.7 Summary and Discussion

Evolutionary algorithms refer to the class of algorithms that simulate processes observed in
natural evolution. Previously, evolutionary algorithms have been successfully used to solve
a number of real world problems. These successes indicate that evolutionary algorithms can
efficiently search large and complex spaces. This property has motivated the use of evolutionary
algorithms for machine learning problems, more specifically, discovering solutions in the space

of computer programs.

In this chapter, the suitability of using evolutionary algorithms to evolve computer pro-
grams was considered. Languages whose syntax closely mirror their semantics are more
amenable to manipulation. This strongly motivates the use of declarative languages where
a change in program syntax (generally) has a corresponding change in the semantics of a
program. Consequently, this thesis focuses on the use of evolutionary algorithms to evolve

formulae of first-order logic.

Examination of previous research indicates that there are number of design decisions that
need to be made: (1) the representation language, (2) the operators and (3) an evaluation

function for formulae. These can be classified along the following dimensions:

1. Should the population correspond to one logic formula, or multiple competing formulae?

2. Should formulae be mapped to a binary string, or should the evolutionary operators be

modified to manipulate logic formulae?

3. Should evolutionary operators be supplemented or replaced with generalisation and

specialisation operators?

4. How can the fitness of formulae be determined?

A summary of evolutionary learning systems discussed in this chapter is shown in Table 2.2.
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2.7.1 Open issues

1. In the setting of learning logic formulae, is it possible to determine whether a binary

mapping is advantageous over symbolic evolution?

2. There is some controversy regarding whether the evolutionary algorithm’s population
should consist of one set of rules or a population of rule sets. Is there an answer to this

question?

3. Evolutionary algorithms are global optimisation procedures (Peck & Dhawan, 1995).
However, an optimisation must comprise of both local and global strategies (Toérn &
Zilinskas, 1989, page 14). The use of hybrid local and global strategies for numerical
optimisation has been shown to be very successful (Davis, 1991; Hart & Belew, 1996).
Can the learning of logic formulae by conventional evolutionary learning algorithms be

improved by the introduction of a local search strategy?

4. Evolutionary algorithms are search procedures that are able to search complex spaces
without requiring prior knowledge of this space. However, in many problem domains,
prior knowledge is available. Can this prior knowledge be used effectively in discovering

logic formulae?
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Chapter 3

Search Locality

Successful application of machine learning algorithms hinges on the specification of the right
space of hypotheses to be searched. Finding this space is a challenge that machine learning
practitioners must regularly address. In the ideal case, one would specify a large space of
hypotheses and perform a complete search (assuming there is sufficient training data). However
for most interesting problems an exhaustive search is computationally intractable. Search of
larger hypothesis spaces is only tractable if one samples heuristically or stochastically. One can
then no longer guarantee finding optimal hypotheses. Furthermore, when searching stochas-
tically the probability of examining any one solution decreases as the number of hypotheses
grows (assuming a uniform sampling over solutions). At this point it is useful to draw on

classical optimisation where stochastic sampling is common.

3.1 A Classical Optimisation Theory Perspective

The problem of searching through a space of logic formulae can be formulated as an optimi-
sation problem. Informally, the problem of learning formulae may be stated as: given a space
of hypotheses (the feasible space) and an objective function, determine those hypotheses that

maximise the objective function. This formalisation is useful because the results of classical
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optimisation have a bearing on this task. According to (Térn & Zilinskas, 1989; Zhigljavsky,

1991), an effective optimisation procedure should take into account two competing strategies:

Global reliability. The global maximum can be found anywhere in the feasible space, there-
fore no part of this space can be neglected if the global maximum is to be found. This

encourages a strategy for uniformly distributing the points over the feasible space.

Local refinement. There is a higher chance of finding a new best point in the neighbourhood
of a point with a relatively large function value. This leads to a strategy in which points

are non-uniformly distributed, and are concentrated around the current best points.

In classical optimisation, the design of a method involves selecting between these two
strategies. However, rather than selecting one strategy at the exclusion of the other, Torn and
Zilinskas argue “because both global reliability and local refinement are important features
of a method most global optimisation methods consist of both a global and local strategy,
and no serious method can lack the global strategy” (T6rn & Zilinskas, 1989, page 14). The
choice between global reliability and local refinement is a trade-off. In the genetic algorithms

literature, this trade-off is called the exploration versus exploitation dilemma (Goldberg, 1989).

3.2 Decomposition of Evolutionary Search

The genetic algorithm may be viewed as a global optimisation method known as the method of
generations (Peck & Dhawan, 1995). Search behavior may be characterised by the manipulation
of sampling distributions over the space of candidate solutions. Firstly, through the selection
process, the set of samples becomes increasingly concentrated around high performance regions
in the search space and thus the breadth of the search dynamically decreases. This is why
GAs are said to be adaptive; they do not require predetermined schedules for controlling
the construction of their sampling distributions. Secondly, the solutions sampled by crossover
varies according to the current population and the locality of this search is narrowed as selection

concentrates the population (Peck & Dhawan, 1995).
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To make this clearer, it is useful to draw on Jones’ one operator, one landscape model
(Jones, 1995a; Jones, 1995b) that allows spaces and their traversal to be described. In this
model, an evolutionary operator defines a landscape. This is represented as a graph, where each
vertex represents a candidate solution, and the edges represent the paths from one solution
to another allowed by the operator'. Since each operator defines a landscape, each operator
is considered independently. The canonical genetic algorithm involves three landscapes: a

mutation landscape, a crossover landscape, and a selection landscape. In the words of Jones,

When a search algorithm makes use of [an] operator, it is traversing an edge
of the landscape graph. From this perspective one can adopt a low-level view of
the working of a GA that involves not one, but three landscapes that are being

simultaneously explored in a complex interrelated fashion.

The GA can be viewed as a cycle of three steps: (1) individuals may make transitions on the
mutation landscape; subsequently, (2) they pair up to form vertices on the crossover landscape;
then, in the last step, (3) the entire population forms a single vertex in the selection landscape
and a transition occurs in this landscape. These three steps correspond to one generation. The
procedure continues by returning to step 1. Figure 3.1 presents a simplified view of these three

steps.

In the following sections, the role of selection, mutation and crossover are considered for
learning logic formulae. In particular, we consider the difference between when an evolutionary
algorithm is applied to search for rules compared to searching for rule sets. We begin with a

few preliminary definitions.

Strictly, the population of an evolutionary algorithm is not a set, as there may be more than

one instance of any particular individual. A more accurate description would be a multiset.

Definition 3.1 (Multiset) A multiset is a collection of objects whose members need not be
distinct. The number of repetitions of each distinct element is called its multiplicity (Fenton

& Hill, 1993).

!Note that this model differs from the conventional model of fitness landscapes introduced by Wright in the
1930s, c¢f. (Wright, 1988).
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Figure 3.1: The interaction of three landscapes in a simple genetic algorithm. Adapted from
(Jones, 1995b).
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In the remainder of this thesis, when a population is referred to as a set, a multiset is meant.

Jones’ model may be formalised as follows (adapted from (Jones, 1995a)):

Definition 3.2 (Landscape.)

A landscape L can be viewed as a directed graph. Gp = (V, E).

Definition 3.3 (Operator.)
An operator, A, can be thought of as a stochastic event that occurs in some context v € V and

whose outcome is a random variable W with some probability distribution function.

Definition 3.4 (Transition probability.)

The probability of the event W = w for a specific w € V and context v, is denoted by A(v,w).

Definition 3.5 (A-neighbourhood.)
The A-neighbourhood of v, Ny(v), is {w € V : A(v,w) > 0}.

If AM(v,w) > 0, then G will contain a directed edge from v to w labelled A(v, w).

Definition 3.6 (Global maximum.)

A global mazimum is a vertezv € V |[Yw €V, f(v) > f(w).

Definition 3.7 (A-maximum.)

A X-global mazimum is a vertez v € V | Yw € Ny(v), f(v) > f(w).

Definition 3.8 (\-local maximum.)

A A-local mazimum is a A-mazimum that is not a A-global mazimum.

In the remaining sections, the localities for mutation, crossover and selection are considered

for bit-strings, rule-mappings and rule-set mappings.

3.2.1 Mutation

Binary mapping. Let S¥ be the set of all k-bit strings. The operator m is a point mutation
that can be viewed as a stochastic event. Given a string s € S¥, operator m constructs

a new string s € S*¥ with probability m(s,s ), where s can be constructed by flippin
g p g
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only one bit of s. The mutation neighbourhood of string s is denoted N,,(s) and given
by
Np(s) = {s’ €Sk :im(s,s) > 0}.

Example 3.1 Let s be the string 1001. The mutation neighbourhood of s is the set of
possible offspring by bit-mutation and corresponds to Ny, (s) = {0001,1101,1011,1000}.

Rule mapping. Let £ be the hypothesis language. The operator m is a point mutation that
can be viewed as a stochastic event. Given a rule r € L, operator m constructs a new
rule 7 with probability m(r, 7). The mutation neighbourhood of rule r is denoted N2 (r)
and given by
NE(r) = {r' € L:m(r,r) > 0}.

Consider a population P = {ry,r9,...,m,} which corresponds to the formula ¢ = 1 A
rg A-++ A T,. Mutation creates a new rule v by the modification of an existing rule in
the population. This new rule is added to the population, resulting in the population
P ={ry,ro,... ,rn}U{r;}. The new population corresponds to the formula: ¢ = 71 A r9A
e Ay A r;. This shows how mutation cannot change an entire formula; only a small
part may be affected. The largest change that can occur is the introduction of a new
rule. The neighbourhood of the mutation operation N2(¢) is the set of new formulae

that may be created by adding a mutated rule.
NE(@) ={pAr, € L:r; € Pym(ry,r;) > 0}.

Rule set mapping. Let £ be the hypothesis language and operator m be a mutation operator
that can be viewed as a stochastic event. Given a propositional formula ¢ = {ry,r9,...}
where ¢ € L, operator m constructs a new formula ¢' with probability m(¢, ¢'). The

mutation neighbourhood of ¢ is denoted NE%(¢4) and given by

NES(¢) ={¢ € L:m(¢,¢) > O}
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Proposition 3.1 The cardinality of the mutation neighbourhood for a rule mapping will be

smaller than for rule-set mapping, |INE(¢)| < |NES(¢)).

For instance, if the representation consists of n rules each with m different possible muta-

tions, then |NE| = m while |[INES| = n.m.

3.2.2 Crossover
Let us now consider the one-point crossover operator.

Binary mapping. Let ¢ be an operator that given a pair of k-bit strings (s1, $2) constructs
a new string pair (s}, s,). The crossover neighbourhood of string pair (s1, s) is denoted

N.((s1, s2)) and is given by
Ne((s1,52)) = {(s1,52) € 8% : e({s1, 82), 51, 52)) > O}

Example 3.2 Let s1 and so be the strings 1001, 0110 respectively. The crossover
neighbourhood of s1 with s is
N.({s1, s2)) = {(1001,0110), (0001, 1110), (1010,0101), (1000,0111)}.
Rule mapping. Let ¢ be an operator that given a pair of rules (ry,r2), 71,72 € L constructs

a new pair of rules (r},r,). The crossover neighbourhood of rule pair (r{,5) is denoted

NZE({r1,72)) and is given by
NE((rira) = {(ri,ma) € L2 ¢({r1, ma), (ry,ma)) > O}

Consider, as for mutation, a population P = {ry,r9,...,7r,} which corresponds to the
formula ¢ = 71 ATo A ... A7y, Let 15,7 € ¢ be two parent rules chosen for crossover.

The crossover neighbourhood of a formula ¢, denoted Nf(¢) is given by
NE(#) = {p A 7"; A ’I‘;- € L:ry,rj € P, c((ri,T)), (r;,r;-)) > 0}.

Note that the neighbourhood of a formula is composed solely of those formulae that add

two additional rules to the original.
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Rule set mapping. Let ¢ be an operator that given a pair of formulae (¢1, ¢2) constructs a
new pair of formulae ((ﬁll, <]5'2) The crossover neighbourhood of a formula ¢; is denoted

NES(¢1) and is given by

NES (1) = {1, ¢ € L b1, ¢1 € P, c({1, do), (¢1, Bo)) > O}

The first point to note is that, unlike mutation, the neighbourhood of crossover is dependent
on the population. For instance, if the population has converged so that all individuals
are identical, then the offspring of a crossover operation can not differ from the parents.
Consequently, the crossover neighbourhood is governed by the formulae in the population.
Secondly, the cardinality of crossover’s neighbourhood decreases as the population converges.
This makes it difficult to characterise the cardinality of the crossover neighbourhoods. However,
if population dynamics are ignored, and the representation consists of n rules each with m

crossover points, then it can be seen that |[NF(¢)| o« m while |[NE9(4)| o< n.m.

3.2.3 Selection

Binary mapping. Let selection be an operator denoted o that given a population of strings
P = {s1,s9,...} constructs a new set of strings P’ C P. The selection neighbourhood of

a population P is denoted N, (P) and is given by
N,(P)={P :o(P,P) > 0}.

Rule mapping. Let selection be an operator denoted ¢ that given a population of rules P
that corresponds to a formulae ¢ = {r1,79,...} constructs a new formula ¢ given by the
population P' C P. The selection neighbourhood of a formula ¢ is denoted N,(¢) and

is given by

No($) = {¢ : o(P,F') > 0}.
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Rule set mapping. Let selection be an operator denoted o that given a population of for-
mulae P = {¢1,¢2,...} constructs a new set of formulae P C P. The selection

neighbourhood of a population P is denoted N, (P) and is given by
Ny(¢) ={¢ :0(P,P")>0,4 € P,}.

Since selection cannot introduce strings that are not already in the population, the selection-
neighbourhood of a population can only include populations that are equal to or a subset
of the existing population. Consequently, the number of neighbouring populations can only
remain equal or reduce through selection. Indeed, repeated selection with no new strings being
introduced can, in some cases, cause the selection neighbourhood to converge to a singleton
population. The cardinality of selection’s neighbourhood in the rule mapping is dependent on
the selection pressure parameter. This determines what fraction of the current population will

survive to the next generation.

3.3 Di i

hen one relinquishes search completeness - one must rely on heuristic or stochastic ap-
proaches to search. In such cases, classical optimisation theory recommends two strategies:
global reliability and local refinement. The use of Jones’ one operator, one landscape model
provides a definition of search locality. Consequently, one can speak of the neighbourhood of a
particular evolutionary operator. The localities of mutation, crossover and selection operators
were examined for both rule and rule set mappings. ith the exception of mutation, the
neighbourhood of the operators does not lend itself to simple analysis as the neighbourhood
of the operator is dependent on the population at that time instant.  hile this simplification
is not ideal, if the population dynamics are ignored, one can make a number of observations

about the locality of operators on rule and rule-set mappings.

In the rule mapping, the evolutionary operators can construct fewer new formulae compared

to the rule-set mapping. Since the rule mapping neighbourhoods have fewer elements, each
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element has a higher probability of being sampled. Consequently, rules in the neighbourhood
have a high sample probability, while in the rule-set mapping each rule-set has a lower proba-
bility of being sampled. Since there are many elements in the rule-set mapping neighbourhood,
it is more robust with respect to local optima.  hile with a rule mapping there is a higher
risk of being trapped in a local maxima. Furthermore, the locality of the operators in the rule
mapping approach is much smaller than the locality of those in the rule-set mapping. ne
can therefore conclude that the operators of the rule mapping model resemble a local strategy,
while the operators of rule-set mapping model have a much broader locality and therefore

resemble a global strategy.

In conclusion, the search-locality perspective suggests that (1) the rule-mapping approach
will tend to find rules faster than than rule-set mapping, but is susceptible to local maxima;
and (2) the rule-set mapping approach is slow to find solutions, but more robust with respect
to local optima. In Section 2. .1, it was questioned whether the population of an evolutionary
algorithm should consist of a population of rules or a population of rule sets. y drawing on
the notion of locality, this question can be addressed. The choice is a trade-off between finding
individual rules quickly, and finding a good set of rules. Global and local search strategies
are valuable in optimisation procedures, and evolutionary search for logic formulae can be
performed over two localities over rules and rule-sets. This raises the question can these
two localities be combined to improve this search. This is the rationale for a new model of
evolutionary learning algorithm that has dual search localities. This is the sub ect of the next

chapter.



Learning classifier systems (LCS) are a class of machine learning algorithm that use a genetic
algorithm to discover propositional rules for a rule-based system (Holland eitman, 19 ).
Surveys ( eJong, 19 ; ilson Goldberg, 19 9; Fogarty et al., 1994) indicate that learning
classifier system research can be split into two schools of thought. In the Michigan approach
(Holland, 19 ; Holland, 19 5), output is a population of production rules (i.e. a rule mapping).
The itt approach (Smith, 19 0; Smith, 19 4), on the other hand, evolves a population of
rule sets (a rule-set mapping). Consequently, adherents of the Michigan approach hold the
view that the genetic algorithm’s population should form one rule set, while itt approach

adherents maintain that the population should represent multiple rule sets.

As described in the previous chapter, rule (Michigan) and rule-set ( itt) mappings have
different search localities. This chapter describes a synthesis of Michigan and itt approaches.

The synthesis may be viewed as a dual-locality learning classifier system. The following



sections will introduce learning classifier systems in greater detail; subsequently, the dual-
locality learning classifier system will be described. Finally, an empirical study is undertaken

to investigate the influence of combining multiple search localities.

Learning classifier systems (LCS) are a class of machine learning algorithm that use a genetic
algorithm to discover propositional rules for a rule-based system (Holland eitman, 19 ).
In this section, learning classifier systems are described in greater detail. The description
begins with an overview of the computational model. This is followed by a description of the

formula string mappings used by the Michigan and itt approaches.

A number of simplifications have been made in order to focus on the space that is searched
by the genetic algorithm. A more formal description of the learning classifier system may be

found in Appendix

1.1 Co utational Mo el

The computational model used by learning classifier systems is a forward-chaining production
system c¢f. ( avis ing, 19 ; aterman  Hayes- oth, 19 ). The production system
interacts with a problem domain as follows. bservations of the problem domain or environ-
ment are encoded as fixed-length strings, or messages . These messages may satisfy one or
more rule antecedents.  hen all rule antecedents of a rule are satisfied the rule is fired and
an output message is created from the consequent. utput messages may either trigger other
rules or affect the environment according to the pre-defined message encoding scheme. This

interaction between the production system and the environment is illustrated in Figure 4.1.

As an example of this interaction, consider the task of sequence prediction. Given an
input of some sequence of letters taken from a finite alphabet, predict the next letter in the

sequence. An input message describes the most recent letter in the sequence, and output



@

Detectors Effectors
Input Rule Output
Mesage List Set Message List

Figure 4.1: roduction system interaction with the problem domain.

messages correspond to a prediction of the next letter. The goal is to discover rules' that
result in desirable output with respect to the state of the environment. For instance, in the
letter sequence prediction problem, desirable output would correspond to accurately predicted
letters. A more rigorous treatment of the learning classifier system’s model may be found in

Appendix .1.

1.2 iscover o o0 ical or ulae

In learning classifier systems, rules are discovered using a genetic algorithm to search either
a space of rules or a space of rule sets. The GA is suited to searching through large spaces
and, although not guaranteed to find an optimal solution, the GA often succeeds in finding

high-fitness solutions.

The canonical genetic algorithm evolves a population of strings of fixed-length sq,..., sy,.

In the LCS these strings serve not only as the genetic algorithm’s population, but also have

e e e e ee ¢ e
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a second interpretation corresponding to a rule set for the production system. ach string
can either be coded as an individual rule or as a complete set of rules. These two approaches
have been termed Michigan and itt (short for ittsburgh) after the university where they

originated.

ichigan pproach. In Holland’s learning classifier system CS-1 (Holland eitman,
19 ) each string is mapped to a single production rule. Thus a string encodes the

antecedent and consequent of a rule with a fixed number of literals. A population of

strings $1, ..., Sy corresponds to a set of rules:
s1: 1«
S2: 2 C2
Sn n Cn

where each string has an antecedent and consequent part. For example,

C

si: [o1]1][1]o]

As a result, crossover of two members of the population results in two new rules, as

illustrated in Figure 4. .

Rule Set at Generation N Rule Set at Generation N+1
aaaaaaaaaa aaaaaaaaaa
bbbbbbbbbb bbbbbbbbbb

aaaaaaabbb
bbbbbbbaaa
—_—

Figure 4. : Crossover of ules.

Pitt pproach. In Smith’s LS-1 system (Smith, 19 0), one string represents all the rules of
the production system. The genetic algorithm’s population therefore corresponds to a

collection of production systems.



For example, a rule set may be mapped to a binary string as follows:?.

S1: 1 Cl1y, 2 Coy.-y m Cm,
S9 : 1 Cl1y, 2 Coy.-y m Cm,
Sp - 1 C1, 2 C2y---5 m Cm

where each string is mapped to a number of antecedent consequent pairs, e.g.
c Cc C

si: [o]1]1][1]1][z]o[s][ofo]---[o[1]0][1]1]

Crossover of two population members therefore results in two new rule sets, as shown in

Figure 4.3.

Parent Rule Set 1 Parent Rule Set 2
aaaaaaaaaa AAAAAAAAAA
bbbbbbbbbb BBBBBBBBBB
mmmmmmTTmm Crossover Poirt MWMVMVMIVM
nnnnnnnnnn NNNNNNNNNN
72277277777 27277777777

Offspring Rule Set 1 Offspring Rule Set 2
aaaaaaaaaa AAAAAAAAAA
aaaaaaaaaa BBBBBBBBBB
M Crossover Point MVVVMVIVMVIVM
NNNNNNNNNN nnnnnnnnnn
27277777777 7222222777

Figure 4.3: Crossover of ule Sets.
e € e € e € e e e e
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Therefore Michigan and itt models differ in a fundamental way. In the former, the
population corresponds to a single rule set. New rules are constructed by the genetic operators,
and selection determines which rules form the final rule set. In the latter, the population
corresponds to a number of competing rule sets. The genetic operators construct new rule-
sets, and the selection process governs which will rule-sets will be discarded and which will be

kept to form subsequent generations.

Consequently, the search locality for the genetic operators in the two mappings are con-
siderably different (Section3.3). oth approaches have their merits in criteria where the other
is deficient. In this sense, the approaches may be complementary, and a combination of their
advantages is desirable. This raises the question does the simultaneous search through the

space of rules and the space of rule-sets lead to improved learning performance

ang et al. ( ang et al., 199 ), describe a general model of multi-level genetic algorithms,
which they refer to as an nGA. volution takes place on several levels and scales simultaneously.
In this model, the lowest level (level 1) is ust a conventional genetic algorithm. However, in
the next level up (level ), each individual is an entire level 1 genetic algorithm. It comprises
of the population, parameters, fitness function and any other elements required to represent
the level one genetic algorithm. So, effectively, a level genetic algorithm is a population of
genetic algorithms. Similarly, a level 3 genetic algorithm is a population of level genetic

algorithms, and so forth. In the words of ( ang et al., 199 ),

The recursive nature of an nGA model enables a system to be composed of
several subsystems, and these subsystems respectively to be composed of even

smaller subsystems, and so on. Hence an nGA system is hierarchically organi ed.

AGA is an instance of the nGA model which consists of only two levels. The perfor-

mance of AGA was compared to other genetic algorithms on standard test functions FO-F3,



astrigin’s function and Grewangk’s function. ang et al. report = AGA performs very
well on the difficult test cases ( astrigin’s function and Grewangk’s function) while showing
only mediocre performance on the relatively easy problems F1-F3.  ne can view the different
levels of AGA as search localities of different granularity. The results reported for AGA
support the view that multiple search localities can improve learning performance on difficult
problems. In the next section, the multiple search locality approach is applied to the problem

of learning logical formulae.

[
[N
[N

3 D

In this section, an algorithm is presented that uses genetic algorithms to learn logic formulae.
The dual-locality learning classifier system ( L-LCS) searches for formulae using two search
localities: search based on the rule-mapping and search based on the rule-set mapping. Conse-
quently, this work brings together three strands of research: the Michigan approach, the itt

approach, and the notion of simultaneous multi-level evolution.

The L-LCS maintains two types of population. A level 1 population consists of binary
strings where each string corresponds to a rule. As a result, a level 1 population corresponds
to a set of rules. At level , each individual in the population is also a string. However, each
string maps to a set of rules. ach set of rules in the level population is an entire level 1
population. For each level, there are different genetic operators for manipulating these strings
and as a result search occurs at two levels: over the space of rules and over the space of

rule-sets. In the following sections the two levels are presented in greater detail.

3.1 evel 1

The first level of the L-LCS corresponds closely to Holland’s Michigan learning classifier
system. The same rule-messaging system, credit assignment algorithm, rule encoding and

genetic operators are used, as described in (Holland et al., 19 ) . etails of the Michigan
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learning classifier system may be found in Appendix . The components particularly relevant

to the L-LCS are described in detail below.
Definition 4.1 ( essage) A message is a k-bit string (mi,ma,...,my),m; € {1,0}.
Definition 4.2 ( on ition) A condition is a string of length k over the alphabet {1,0, }.

Definition 4.3 ( atisfies) A message (m1, mo,..., my) satisfies a condition {(c1,co,...,ck)

if for all =1.k c; = orc; =m;.

Example 4.1 idven a condition 01  , then messages 0101 and 0110 satisfy the condition,
while 0001 and 1011 do not.

Definition 4.4 ( ction)

An action is a string of k symbols { 1, 2,..., k), where ;€ {1,0, }.

Definition 4.5 ( lassifier) A classifier or rule comprises of one or more conditions ci,...,c

and an action , and may be written

<61702a"'7c ’ )
Definition 4.6 (Triggere classifier) Let be a classifier and ={ 1, o,...} be a set
of messages referred to as a message list . The condition part c1,...,c¢ of s satisfied if
each condition c; is satisfied by some message ; € .  hen this occurs a classifier is said

to be triggered.

If a message satisfies a condition of a triggered classifier, a new message is generated from

the action.

Definition 4.7 (Outgoing message)
Let (mqy,maq,...,mg) be an input message and { 1, 2,..., k) be an action. An outgoing

message is a string { 1, 2,--., k) where for all =1..k

i Zf ]'210’/'0

mj Zf j=



Example 4.2 Let 0110 be an input message that satisfies a condition in a triggered classifier.

f the classifier has an action 10 |, then the outgoing message is 1010.

The L-LCS receives information from the environment through detectors and influences

the environment through effectors. The detectors are a set of
Definition 4.8 (Le el 1 in i i ual) A Level 1 individual is a classifier.

Definition 4. (Le el 1 population)
A Level 1 population is a set of rules { 1, 2,..., }. tis a data structure that holds one

or more classifiers in an arbitrary order.

Definition 4.1 (Le el 1 classifier system) A Level 1 classifier system consists of

. a list of classifiers
. a message list
. an input interface

n output interf ce

The message list is a data structure that holds ero or more messages in an arbitrary
order. It represents the classifier system’s internal state and can be viewed as an unstructured
blackboard’. The messages originate from two sources: either directly from the environment

or from classifiers active in the previous time step. The lifetime of a message is one time step.

The level 1 population is initialised with randomly generated strings. Subsequently it
proceeds by iterating through a number of operations referred to as the b sic execution cycle.

ach cycle consists of the following steps referred to as the level 1 cycle.

Definition 4.11 (Le el 1 cycle) The level 1 cycle proceeds s follows

I ce ll mess ges from the input interf ce on the current mess ge list.

omp re 1l mess ges to 1l conditions nd record 1l m tches.



or e ch m tch gener te mess ge for the new mess ge list.
epl ce the current mess ge list by the new mess ge list.

roduce the mew output mess ge list through the output interf ce to produce system

output.
. with prob bility . perform level crossover
. with prob bility . perform level mut tion
. construct new level popul tion by performing level selection

eturn to step

The level 1 learning classifier system interacts with its environment which is treated as a
discrete-time dynamical system. At the beginning of each time step, the level 1 LCS observes a
representation of the environment’s current state and selects one of a finite number of actions,
based on the production rules. As a result, the environment enters a new state and returns a
value (referred to as the rew rd) which corresponds to a measure of how desirable the outcome

was.

Since a number of rules can contribute to the elicitation of reward, the L-LCS follows
the Michigan approach of using a reinforcement algorithm (the ucket rigade Algorithm) to
distribute credit to the rules. The reward accumulated by rules is referred to as the strength of
a classifier and is used as a measure of fitness for the genetic algorithm. etails of the bucket

brigade reinforcement algorithm may be found in Appendix .3.

A genetic algorithm is used to search the space of rules. ules of higher fitness with respect
to mean fitness are used to derive new rules, which replace those of poor fitness. perators to

construct new rules include mutation, crossover, and three non-genetic operators.

Definition 4.12 (Le el 1 genetic operators) The level 1 genetic operators re



Le el 1 utation. elect rule prob bilistic lly ccording to tness, r ndomly modify  bit

in the string nd dd the new string to the popul tion

Le el 1 rosso er is bin ry oper tor th t selects two rules prob bilistic lly ccording to
tness. A point long the rules is chosen r ndomly to split e ch rule into he d nd

t il. Two new rules re cre ted by exch nging the t il p rts of the rules. This is illustr ted

i igure
Rule Set at Generation N Rule Set at Generation N+1

aaaaaaaaaa aaaaaaaaaa
bbbbbbbbbb bbbbbbbbbb

aaaaaaabbb

bbbbbbbaaa

ﬁ
igure . Level crossover. Two p rent rules re selected from the popul tion left nd re

crossed over nd dded to the popul tion right, shown in bold .

Le el 1 election. celect rule prob bilistic lly ccording to its tness nd dd to the new

popul tion. epe t until the new popul tion consists of the speci ed zed number of rules.

In addition to these genetic operators there are a number of additional operators that are
based on the operation of the production system. They are the triggered cover detector, the
triggered cover effector and the triggered ch ining oper tor. These operators are not described
in the level 1 cycle ( ef. 4.11) as they are triggered by production system operation. These
operators are adopted from the Michigan classifier system and have not been altered. etails

may be found in Appendix .4.

This concludes the description of the key components of the level 1 learning classifier
system. Level 1 essentially follows Holland’s Michigan LCS. The main difference lies in its

relation to the second level.




3.2 evel 2

In the second level of the L-LCS, each individual corresponds to a rule set. Consequently,
there is a resemblance to the itt learning classifier system (Smith, 19 0). Furthermore, each
level individu lis a level 1 popul tion. ach string in the level 1 population is concatenated

to form one long string.

Definition 4.13 (Le el 2 in i i wal) Let P = { 1, 2,... n} be level popul tion of
cl ssi ers. A Level individual isthe conc ten tion of e ch individu lin level popul tion,

= 1 92... n. onseuently it is string th t represents set of cl ssi ers or rule set .

Definition 4.14 (Le el 2 population) A Level population consists of set of Level

individu Is, { 1, 2,... n} i.e.  popul tion of rule sets.

The fitness of a rule set is the total reward accumulated through interaction with the
environment. In level 1, estimating the fitness of a rule was complicated by the credit
assignment problem (i.e. determining which rule led to a reward). This problem does not

exist at level ; the total reward accumulated is a good estimate of a rule set’s performance.

The genetic operators at this level differ only from level 1 in that the strings they operate

on are longer. There are no non-genetic operators.

Definition 4.15 (Le el 2 genetic operators) The Level genetic operators re

Le el 2 utation. elect rule set prob bilistic lly ccording to tness, r ndomly modify

bit in the string nd dd the new string to the popul tion.

Le el 2 rosso er. Two rule sets ret en nd crossover-point chosen t r ndom, sep -
r ting e ch rule-setinto he d ndt il. Two new offspring re constructed by exch nging

the he d p rts or the t il p rts. ee igure

Le el 2 election. elect rule set prob bilistic lly ccording to its tness nd dd to the
new popul tion level . epe t until the new popul tion consists of the speci ed zed

number of rule sets.



Parent Rule Set 1 Parent Rule Set 2
aaaaaaaaaa AAAAAAAAAA
bbbbbbbbbb BBBBBBBBBB
mmmmmmTTIm Crossover Poirt MWMVMVMIVM
nnnnnnnnnn NNNNNNNNNN
72277277777 27277777777

Offspring Rule Set 1

Offspring Rule Set 2

aaaaaaaaaa AAAAAAAAAA
aaaaaaaaaa BBBBBBBBBB
M Crossover Point MVVVMVIVMVIVM
NNNNNNNNNN nnnnnnnnnn
27277777777 7222222777
igure rossover Of ules ets.




Definition 4.16 The level cycle proceeds s follows

or e ch level individu 1
execute level cycle r times, where r is the cycles-per-gener tion p r meter.
. with prob bility 2 perform level crossover
. with prob bility 2, perform level mut tion
. construct new level popul tion by performing level selection

eturn to step

Level resembles a itt-style learning classifier system.

3.3 Su ar

A hybrid learning algorithm, referred to as the ual-Locality learning classifier system ( L-
LCS), has been described which incorporates features of both Michigan- and itt-style learning
classifier systems. The L-LCS uses a genetic algorithm to search at two levels. At level 1,
search is confined to the space of rules; at level the genetic operators search the space of rule
sets. Hence du I-loc lity search. The use of the genetic algorithm (and additional non-genetic

operators) is summarised in the L-LCS Table 4.1.



Level 1 Level

Individual

ule ule set

ncoding

Ternary string Ternary string

Fitness function

Feedback from environment
distributed by Feedback from environment
ucket rigade algorithm

Genetic operators
- crossover
- mutation
- selection

ule crossover ule set crossover
oint mutation oint mutation
fitness proportional fitness proportional

Additional operators

Triggered cover detector
Triggered cover effector None
Triggered chaining

Table 4.1: Summary of L-LCS.



This section describes an investigation to determine whether the simultaneous use of multiple
search localities in the L-LCS improves learning performance over a conventional Michigan
LCS. The ob ective of the experiment is to examine the effect of using two search localities

over ust a single locality.

This is done by examining the ability of the L-LCS to learn the appropriate actions for
states in a discrete-time dynamical system. The aim is to optimise the feedback (or reward)

by performing the appropriate action given the state of the discrete-time dynamical system.

The task chosen is the noughts-and-crosses (tic-tac-toe) problem; reward is optimised by

selecting the right move given the current board state.

In the experiment below, the L-LCS is compared against a single Michigan LCS and to
ensure a fair comparison both algorithms interact with the environment for an equal number

of games.

. .1 Materials
Problem Domain

Noughts and Crosses (Tic-Tac-Toe) represents a relatively simple discrete-time dynamical
system, yet learning the rules to characterise a good playing strategy is non-trivial. Noughts
and Crosses is a two-player ero-sum game. ne player is referred to as Noughts ( ), and the
other as Crosses ( ). ach player takes turns to select a previously unoccupied cell on a 3x3
grid. The ob ective of each player is to win by occupying three cells either in a row, column
or diagonal before the opponent. If neither player wins and all positions have been occupied,

then the game is deemed a draw.

The discrete-time dynamical system is a pre-programmed opponent with the following

(rather naive) behaviour:



hen there are several possible legitimate choices within the above setting, one is chosen
at random to encourage coverage of a wide range of scenarios. This corresponds to a simple

one-move lookahead behaviour.

Ideally, the only feedback to the learner should be the outcome at the end of the game:
win, draw or lose . However, feedback was supplied earlier in the game by associating each
action board-position pair with a reward. The rewards are shown in Table 4. . The absolute
values are of no particular significance, but their relative proportions are. For example, with
the rewards chosen four legal moves are udged equal to preventing the opponent from winning

(i.e. a blocking move).

‘ utcome ‘ eward ‘
Illegal Move 0
Legal Move 50
Non- locking Move 0
locking Move 00
inning Move 400
Table 4. : ewards for actions in the Noughts and Crosses roblem

A good strategy is one that selects actions with high reward given the board state. The

task of the learning algorithm is to optimise reward by discovering such strategies.

e e e e e € e e e ee € e e
e e e e e e e e e e e e e ee e e
e e e e e ee e e

e e ee ¢ e e e e e e e



lgorithms
The two learning algorithms to be compared are:

ontrol. An ensemble of Holland’s Michigan-style learning classifier system.
Treatment. The dual-locality learning classifier system described in Section 4.3.

Any significant difference in performance can then be attributed to the two-tiered search.

A software tool has been constructed that implements the L-LCS algorithm described in
Section 4.3 and the Michigan LCS described in Appendix . The tool ( L-LCS 1.0) consists

of a set of domain-independent library routines coded in Ada (Ada, 19 3).

. .2 Met o

uring pilot experiments it was immediately apparent that the L-LCS outperforms a single
Michigan learning classifier system. This is not surprising since the L-LCS comprises of
multiple Michigan LCSs. It therefore has far more interaction with the problem domain and

is computationally more expensive.

Since the aim is to determine whether the simultaneous use of multiple search localities
increases the acquired payoff, a fairer control case is employed: for each member of the L-
LCS’s level population a single Michigan classifier system is run. The best result achieved
out of all the Michigan LCS runs is returned. As a result both the ensemble of Michigan LCSs
and L-LCS play the same number of games. This corresponds to a Monte Carlo method

where the event being drawn is the result from a Michigan run.

nteraction ith Pre-Programme Opponent

ach level individual of the L-LCS and each Michigan classifier system plays against the

pre-programmed opponent for a fixed number of games. The input to the learning algorithm



is a single detector message which encodes the state of the game board. The output is a single
effector message that corresponds to a position to be occupied. n producing an effector
message that codes a move, a quantitative measure of performance is fed back according to

Table 4. .

Problem Enco ing

The representation used was based on (Chalk  Smith, 1994). The detector message is a string
of nine grid positions, where each position consists of two bits to encode the contents of the
location. The first bit encodes whether the location is blank(0) or occupied(1). The second bit
denotes whether it is a nought(0) or a cross(1). The effectors are encoded as a string of 9 bits,
where each bit represents a board position. The first of the 9 bits represents the move to be
played. Figure 4. shows an example of a grid state, its encoding and a detector and effector
messages. Apart from the bias inherent in the encoding, no other  priori bias was supplied
to the learning algorithms. For instance, there was no knowledge of the rules of the game, or

notion of legal moves.

1 2 3 (@) X (0)
4 5 6 (0]
7 8 9 X
1 2 3 4 5 6 7 8 9

Detector [ 10[11]10]00[10]10][00[11]11]

ifector [0 JofofofoJo[1]o]o]
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C1: class(A,mammal) :- has_milk(A).

C2: class(A reptile) :- has_covering(A,scales), habitat(A ,land).
C3: class(A,bird) :- has_covering(A feathers).

C4: class(A fish) :- has_gills(A).

C5: class(A reptile) :- has_covering(A,scales), has_legs(A 4).
C6: class(A fish) :- has_eggs(A).

C10: class(A,bird) :- has_legs(A,2), has_eggs(A).

C11: class(A,mammal) :-has _legs(A,2), homeothermic(A).
C12: class(A reptile) :- has legs(A,4).

C13: class(A fish) :- has_gills(A), habitat(A,water).

C14: class(A,bird) :- habitat(A,land).

C15: class(A,mammal) :- habitat(A,caves).

C1: class(A,mammal) :- has_milk(A).

C2: class(A,reptile) :- has_covering(A,scales), habitat(A,land).
C15: class(A,mammal) :- habitat(A,caves).

C4: class(A fish) :- has_gills(A).

C10: class(A,bird) :- has_legs(A,2), has_eggs(A).

C11: class(A,mammal) :-has_legs(A,2), homeothermic(A).
C12: class(A reptile) :- has_legs(A 4).

C13: class(A fish) :- has_gills(A), habitat(A,water).

C14: class(A,bird) :- habitat(A,land).

C3: class(A ,bird) :- has_covering(A feathers).

C5: class(A reptile) :- has_covering(A,scales), has legs(A,4).
C6: class(A fish) :- has_eggs(A).



















P N W OO N

illegal(e,3,a,1,e1).

P N Wb OO N

not(illegal(d,4,9,3,b,5)).
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